Producing Non-toxic, High Bio-content Non-isocyanate Polyurethanes from Lignin

Market Overview:

Polyurethane foams and plastics are widely used in the furniture, building, life sciences, and automotive markets due to their low-permeability, chemical resistance, and elasticity and toughness. Their production, however, involves numerous toxic additives and substances that pose a significant risk to workers and consumers. Compounds like phosgene and di-isocyanates contain multiple health hazards and are classified as “Cancer Causing, Mutagenic and Reproductive Toxins”. To combat this, Clemson University inventors have developed a synthesis of polyurethane that replaces the use of toxic compounds. Their protocol makes use of agricultural by-products, such as lignin, and non-toxic organic carbonates. The result is a polyurethane compound containing 100% bio-content. The lignin market in general is estimated at $7.6 billion in 2021, growing at a CAGR of 9.1%. The use of lignin is particularly innovative, given its ability to produce materials of high strength due to its unique chemical structure. Using a high level of biomass in the formulation and developing the conditions for its chemical recycling,  this technology enables a sustainable polyurethane in a market dominated by the challenge of persistent plastic waste in the environment.

 

Application                                                                   Stage of Development

Automative, Packaging, Insulation, Lignin,               Proof of concept

Sustainable and Biodegradable Plastic,

Lightweight Materials

        

Advantages

  • Creates reactive molecules from lignin using non-toxic and biobased reagents
  • Addresses the problems of environmental threats without contributing to the global crisis of plastic waste
  • Presents an entirely new concept of packaging materials using 100% biobased compounds

 

Technical Summary

The experimental protocol makes use of technical Kraft lignin without depolymerization or fractionation with organic carbonates to functionalize the lignin macromolecular structure with 5-membered cyclocarbonate groups. The technique makes use of glycerol carbonate at 150°C for 1.5 hours with Kraft lignin and a subsequent step using dimethyl carbonate at 75°C for 4 hours to produce cyclocarbonate groups on the backbone of lignin. The curing reaction makes use of a 100% biobased diamine derived from vegetable oil. The addition of curing agent to the cyclocarbonated precursors causes fast gel times enabling the curing and foaming reaction to occur on similar timescales.   For the foaming reaction, a unique process developed in our lab called “delayed addition” (DA) makes use of polymethlyhydrosiloxane (PMHS) as foaming agent. The DA approach allows for a time interval before addition of the foaming agent allowing the crosslinking reaction to progress in the NIPU formulation.

View printable PDF version of this technology 

____________________________________________________________________________________________

Inventor:                       Srikanth Pilla, James Sternberg

Patent Type:                  N/A

Serial Number:             N/A

CURF Ref No:              2020-026

Patent Information:
Category(s):
Advanced Materials
For Information, Contact:
Andy Bluvas
Technology Commercialization Officer
Clemson University Research Foundation
bluvasa@clemson.edu
Inventors:
Keywords:
© 2021. All Rights Reserved. Powered by Inteum