

# HIV Inhibitors to Prevent Spread of Virus in Patients (2010-001)

HIV Inhibitor Targets RNA in the Replication Cycle to Prevent Virus from Spreading

#### **Market Overview**

This inhibitor comprises a new strategy for mitigating the growth and spread of HIV. According to the World Health Organization, over 36 million people are living with HIV around the world. Consequently, the global HIV therapeutics market is estimated to reach a value of \$15.3 billion by 2023. Most HIV inhibitors currently available are nucleoside or reverse transcriptase inhibitors. Increased resistance to these drugs calls for new approaches to HIV suppression, therefore non-nucleoside HIV inhibitors are in demand. Clemson University researchers have developed a new HIV inhibitor featuring two compounds that bind with viral RNA to suppress its ability to replicate. Because these two compounds work together to block virus replication at two separate points in the RNA strand, single point mutations cannot develop. This drastically reduces the occurrence of mutated RNA strands that may become drug-resistant. This inhibitor will be more effective and less risky than current treatments. Patients with HIV can expect suppression of the virus with low potential for eventual resistance.

## Application

#### **Stage of Development**

HIV treatment

In-vitro proof of concept; pre-clinical studies

#### **Advantages**

- Blocks replication of virus at two points, preventing mutations from developing
- Decreases chance of mutation to a drug-resistant strain, effectively suppressing the virus
- Targets RNA within the replication cycle, providing more effective treatment than current therapies

#### **Technical Summary**

Clemson University researchers have developed RNAtargeted ligands that disrupt RNA-protein interactions critical for HIV replication, thus inhibiting HIV growth. The new strategy for RNA-targeted therapeutics would prevent virus proliferation. The innovative compounds, neomycin dimers and benzimidazole-neomycin conjugates, show significant inhibition of HIV and bind to crucial RNA structures responsible for virus replication. By targeting RNA at multiple points during the replication cycle, further spread of the virus can be prevented with a very low chance of developing drug resistance.

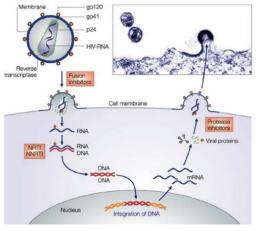



Figure 1: HIV Replication Cycle



| Jemson | University | Research | oundation | 1 |  |
|--------|------------|----------|-----------|---|--|
|        |            |          |           |   |  |
|        |            |          |           |   |  |

| Арр Туре              | Country          | Serial No.               | Patent<br>No. | CURF<br>Ref.<br>Number | Inventors    |
|-----------------------|------------------|--------------------------|---------------|------------------------|--------------|
| Utility<br>Divisional | United<br>States | 12/857,425<br>14/703,549 |               | 2010-001               | Dr. Dev Arya |

#### About the Inventors



Dr. Dev Arya is a Professor of Bio-Organic and Medicinal Chemistry at Clemson University. He earned his Ph.D. in Bioorganic Chemistry from Northeastern University, Boston. Prior to joining Clemson, he completed postdoctoral studies at UC Santa Barbara. He is the recipient of the National Science Foundation CAREER Award and ACS Horace S. Isbell Award of the Division of Carbohydrate Chemistry. Dr. Arya has one issued patent and another in prosecution. His research interests focus on the understanding, design, and discovery of new motifs for the molecular recognition of biological macromolecules.

### **For More Information**

To learn more about this technology, please contact:

#### A. Chris Gesswein

Director of Licensing for Technology Transfer

agesswe@clemson.edu

(864) 656-0797